Language Extension for Texture Mapping

Syntax:

0 !TEXMAP (START | NEXT) method parameters pngfile [GLOSSMAP pngfile]

0 !: geometry1

geometry2

0 !TEXMAP FALLBACK

geometry3

0 !TEXMAP END

The START command indicates that the given texture should be used (if another texture is currently in use, it is pushed onto a stack for retrieval when an END command is given). This texture will remain in effect until an END is given or the file in which the START is located ends. The texture will remain active when processing an included file unless overridden within that file.

The FALLBACK command is a section marker. In a TEXMAP supporting application, all geometry lines (whether following the 0 !: comment marker, or presented as standard LDRAW geometry: geometry1 or geometry2 lines) between START and FALLBACK are to be used as geometry and have the texture applied. All geometry between FALLBACK and END are ignored. In applications that don't support TEXMAP, nothing needs to be done, and all non-commented geometry is generated as normal (though the LDRAW parts author should be very cautious not to introduce unintended non-commented geometry lines to the START-FALLBACK section).

In general, the START to FALLBACK section will contain only geometry following the special comment marker 0 !:, and geometry between FALLBACK and END will not. The first set of geometry will be used when textures are active (and the second will be ignored), and vice-versa when TEXMAP is not supported.

NOTE: be cautious (and think through your approach) when including geometry2 lines. This feature is present for use generally in the case where the textured and non-textured FALLBACK geometry are the same. This is a rare occurrence, and normally would not be used.

The END command stops using the current texture and restores the previous texture to current status. This means that nested commands with START will form a stack of textures and the END command will pop those textures. If an END command given in a sub file stops the use of a texture specified in a calling file, then that texture will be restored to use when the sub file is exited.

The NEXT command is a shortcut to make a texture work only for the next 1, 2, 3, 4, or 5 line. It would be equivalent to use the START command and then to place an END command immediately after the next 1, 2, 3, 4, or 5 line.

The first PNG file represents the texture bitmap to apply. The PNG can be B&W or color and if an alpha channel exists, it should be applied appropriately (allowing the part color to show through). The second optional PNG is used as a glossmap. It should be a single channel image where the value indicates the amount of specularity to apply at the part of the texture map (RG and B are currently ignored – but reserved – in gloss maps, and the A (alpha) channel determines the amount of gloss at a given texel).

There are three possible methods that can be used to apply textures:

PLANAR

The parameters for PLANAR are:

x1 y1 z1 x2 y2 z2 x3 y3 z3

These three points represent 3 corners of the texture map in world coordinates. They form a plane for which objects can be projected to and they also represent the extents of the texture.

In addition, points 1 and 2 represent a plane (P1) perpendicular to the texture where point 1 lies on the plane and the normal to the plane follows the line from point 1 to 2. Similarly points 1 and 3 represent a plane (P2) which is perpendicular to both planes. This plane also contains point 1 but its normal follows the line from point 1 to 3.

Now to map from world coordinates to texture coordinates, U is given by the distance between a point and plane P1 divided by the length of the vector from point 1 to point 2. V is given by the distance between a point and plane P2 divided by the length of the vector from point 1 to point 3. Now U and V are values normalized to between 0 and 1. These can now be mapped to the pixels of the texture map.

CYLINDRICAL

The parameters for CYLINDRICAL are:

x1 y1 z1 x2 y2 z2 x3 y3 z3 a

The first point represents the bottom center of the cylinder. The second point represents the top center of the cylinder. The third point represents a location on the outer edge of the cylinder bottom where the center-bottom of the texture would touch. The angle indicates the how much of the cylinder is mapped by the texture and so the extents would be –a/2 to a/2 as measured relative to the radial line from point 1 to point 3.

Now to map from world coordinates to texture coordinates, U is given by the angle between the vector formed by points 1 and 3 and the vector formed by point 1 and a world point that has been projected to the plane in which the base of the cylinder occupies. This angle is then divided by the “a” parameter to normalize it to the 0 to 1 range. V is given as the distance of a point from the plane occupied by the base of the cylinder and divided by the length of the vector from point 1 to point 2.

NEED DRAWING

SPHERICAL

The parameters for SPHERICAL are:

x1 y1 z1 x2 y2 z2 x3 y3 z3 a b

The first point represents the center of the sphere. The second point represents a point on the sphere where the center of the texture map will touch. The third point is used to form a plane (P1) that is perpendicular to the texture and bisects it horizontally. An additional plane (P2) can be computed by using points 1 and 2 and generating a 3rd point along the normal of P1. P2 will be perpendicular to both P1 and the texture and will bisect the texture vertically. The two angles indicate the extents of the sphere that get mapped to. These are –a/2 to a/2 and –b/2 to b/2 as measured relative to the vector from point 1 to point 2 and within the planes P1 and P2 respectively.

Now to map world coordinates to texture coordinates, U is given by the angle between the vector formed by points 1 and 2 and the vector formed by point 1 and a world point that has been projected to the plane P1. The angle is divided by “a” to normalize it to between 0 and 1. V is given by the angle between the vector formed by points 1 and 2 and the vector formed by point 1 and a world point that has been projected to the plane P2. The angle is divided by “b” to normalize it.

NEED DRAWING

Foundry Implementation:

To create the texture, I use a free PNG library from the web and read the file into a data buffer with 4 bytes per pixel (RGBA). OpenGL requires textures be a power of 2 in each dimension, so I extend the textures to comply and fill the extra space with 100% transparent pixels. I keep track of the original width and height though in order to scale the plane equations so that 0 – 1 maps to the actual texture and not the blank area added to comply with OpenGL.

One other thing I do is I add a transparent 1 pixel boundary to the texture. OpenGL allows the texture to repeat or to clamp. In order to get a texture to only cover part of a facet, I use clamp, but clamp causes any color at the edge of the texture to bleed out to the edge of the facet.

Here is my OpenGL code to actually create the texture:

LDTexture::LDTexture(const string& filename)

{

read_png(filename.c_str(), &m_data, &m_width, &m_height, &m_hasAlpha);

int wide = 2;

while(wide < m_width)

wide <<= 1;

int high = 2;

while(high < m_height)

high <<= 1;

glGenTextures(1, &m_id);

glBindTexture(GL_TEXTURE_2D, m_id);

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);

glTexImage2D(GL_TEXTURE_2D, 0, m_hasAlpha ? GL_RGBA : GL_RGB, wide, high, 0,

m_hasAlpha ? GL_RGBA : GL_RGB, GL_UNSIGNED_BYTE, m_data);

}

Here is my OpenGL code to display a texture:

if(it2->texture.texture && bUseTexture)

{

glEnable(GL_TEXTURE_2D);

glBindTexture(GL_TEXTURE_2D, it2->texture.texture->GetID());

LDPoint point = it2->texture.pnts->at(it2->texture.nV[0]);

LDPoint normal = it2->texture.pnts->at(it2->texture.nV[1]) - point;

double length = normal.length();

double scale = it2->texture.texture->GetWidth();

normal.normalize();

double planeCoefficients[4];

planeCoefficients[0] = (normal.X() * scale) / length;

planeCoefficients[1] = (normal.Y() * scale) / length;

planeCoefficients[2] = (normal.Z() * scale) / length;

planeCoefficients[3] = -((normal * point) * scale) / length;

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);

glTexGendv(GL_S, GL_OBJECT_PLANE, planeCoefficients);

glEnable(GL_TEXTURE_GEN_S);

normal = it2->texture.pnts->at(it2->texture.nV[2]) - point;

length = normal.length();

scale = it2->texture.texture->GetHeight();

normal.normalize();

planeCoefficients[0] = (normal.X() * scale) / length;

planeCoefficients[1] = (normal.Y() * scale) / length;

planeCoefficients[2] = (normal.Z() * scale) / length;

planeCoefficients[3] = -((normal * point) * scale) / length;

glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);

glTexGendv(GL_T, GL_OBJECT_PLANE, planeCoefficients);

glEnable(GL_TEXTURE_GEN_T);

}

else

{

glDisable(GL_TEXTURE_GEN_S);

glDisable(GL_TEXTURE_GEN_T);

glDisable(GL_TEXTURE_2D);

}

This can be followed by the glBegin/glEnd and glVector commands.
(x1,y1,z1)

(x2,y2,z2)

(x3,y3,z3)

P2

P1

U

V

